Followers

Sunday, 27 March 2011

Binary and Hexadecimal Numbers

Bits and Bytes
- Storage locations in digital computers are built using electical circuits that can either have a high voltage or a low voltage.
- 0 represents a low voltage
- 1 represents a high voltage
- A byte is 8 bits together
- A word is a group of bytes

Denary
136 represented in denary is (1x100) + (3x10) + (6x1)

Coverting Binary to Denary
- Create a Binary table
- Write in the binary number from right to left
- Add up the values where a '1' is in the column.

Example:  01110101
128     64     32     16     8     4     2     1
  0        1       1       1      0     1     0     1

= 64+32+16+4+1
= 117

Converting Denary to Binary
- Create a Binary table
- Go from left to right making sure each number in the table is less than the number before
- Fill gaps with '0'

Example: 51
64     32     16     8     4     2     1
0        1       1      0     0     1     1

Adding Binary Numbers
- Put binary numbers into column method

Example:
     10011
     01011
=   11110  = 30

Rules of Adding Binary

0 + 0 = 0 (no carry)
0 + 1 = 1 (no carry)
1 + 0 = 1 (no carry)
1 + 1 = 10 (0 and carry 1)
1 + 1 + 1 = 11 (1 and carry 1)

Multiplying Binary
Example:
 110
x 11
= 1100

Binary Multiplication Method
1.Start on the second row at the left.
2.For each 1 you find you create a row below the bar with the number at the  top followed by the number of places to the right of the 1 you are considering.
3.Finally add all the rows below the bar – using binary addition rules
 
Converting Denary Negatives into Binary
- Find Binary equivalent to denary
- Change 0's to 1's and 1's to 0's
- Add one to the result
 
Example: -13
16     8     4     2     1
0       1     1     0     1 (binary equivalent)
1       0     0     1     0 (change 0's and 1's vice versa)
1       0     0     1     1 (add one)

 Converting Binary Negatives into Denary
- Put into binary table
- Convert 1's to 0's and 0's to 1's
- Add one to the result
-Convert to denary and place a negative sign in front

Example:  0100111
64     32     16     8     4      2     1
0        1       0      0     1      1     1 (binary in table)
1        0       1      1     0      0     0 (change 0's to 1's vice versa)
1        0       1      1     0      0     1 (add one to result)
= -89

Subtracting Binary
- Convert number to be subtracted  into a negative number and add them.

Hexadecimal
- Hexadecimal goes from denary 1 to denary 16.
- Hexadecimal goes from 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10

Converting Denary to Hexadecimal
- Convert to binary
- Take each group of 4 and convert into hex

Example: 213
128     64     32     16     8     4     2     1
 1         1       0       1      0     1     0     1
1101 = 13 = D
0101 = 5 = 5
= D5

Decimals
- Create a binary table with a decimal place after 1
e.g.  32      16      8      4      2      1     .     0.5     0.25  etc.
       
Example

48.75
32     16     8     4     2     1     .     0.5      0.25
 1       1      0     0     0     0     .      1          1 

1 comment:

  1. Great summary - good examples and all the main points.

    You might find this site interesting:

    http://www.exploringbinary.com

    ReplyDelete